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ABSTRACT 

This paper has two aims: to aid a non-logician to construct uncountable 
examples by reducing the problems to finitary problems, and also to present 
some construction solving open problems. We assume the diamond for l,l, and 
solve problems in Boolean algebras, existentially closed groups and Banach 
spaces. In particular, we show that for a given countable e.c. group M there is 
no uncountable group embeddable in every G L~ ~-equivalent to M; and that 
there is a non-separable Banach space with no 1~ t elements, no one being the 
closure of the convex hull of the others. Both had been well-known questions. 
We also deal generally with inevitable models (§4). 

§1. The general principle 

DEFINITION 1.1. (1) W e  call K a nice fami ly  if: 

(a) K is a family  of f.g. mode l s  of f ixed l anguage  (s ignature) .  

(b) K is c losed  unde r  i s o m o r p h i s m  (i.e. M ~ N, N E K impl ies  M ~ K )  and 

t ak ing  f.g. submode l s .  

(c) Each  M @ K is coun t ab l e  and the s igna ture  is coun tab le  and K has,  up to 

i somorph i sm ,  1% m e m b e r s .  

(2) K is a ve ry  nice fami ly  if in add i t ion :  

(d) K has  the  jo in t  e m b e d d i n g  p r o p e r t y  (i.e., if M0,M~ E K, then  for  some  

N E K there  are  e m b e d d i n g s  ]~ : Mt ---> N, l = 0,1). 

(e) K has the  a m a l g a m a t i o n  p r o p e r t y  (i.e., if M _C Mt (l = 1,2) then  the re  is N, 

M _C N and  e m b e d d i n g s  )~ of M~ into N over  M, i.e. )6 r M -- the ident i ty) .  
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REMARK. If K is nice and has the amalgamation property, then it is the 

disjoint union of very nice classes. 

DEFINmON 1.2. (1) R is called K-nice if 

(a) K is a nice family. 

(b) R is a set of triples of the form (M, N, a),  such that M _C N are in K, and 

a E N - M .  We write ( M , N , a ) G R  or R(M,N,a )  holds. 

(c) If M C_ M ' E  K and ( M , N , a ) E  R then there are N' , f  such that M'C_ N'  

and f is an embedding of N into N'  over M, f (a)  f{: M', and R(M' ,N ' , f (a ) )  
holds. 

(d) R is not empty. 
(2) R is K-very nice if in addition R (M, N, a),  N _C N'  implies R (M, N', a). 

REMARK. The intuitive meaning of R (M,N, a)  is that in some uncountable 

M*, M C M*, there are uncountably many a ' E  M* "similar" to a over M. 

DEFINITION 1.3. For a nice family K let 

K 1 = { M  :every f.g. submodel of M is in K} 

(equivalently, M E K' is a direct limit of members of K), 

K "  = { M E K I : i f  MoCNo,  NoEK,  MoC_M, and M o E K  then we 

can embed N, into M over Mo}, 

Kx( ,~ )=K~={MEKX:I[M[I=A}  fo rx  = 1,H. 

DEFINmON 1.4. For MC_N in K ~ R (M,N ,a )  means: for every f.g. NoC_ N 
there are f.g. N~,M~ such that NoC_N~_CN, N o f q M C _ M 1 C N ~ f q M ,  and 

R (M~, N~, a) holds. 

DEFINmON 1.5. (1) A candidate M is a sequence of the form 

(Mk . . . . .  Mo,ak ~ . . . . .  ao) such that R(M,M~.~,a~) holds for l < k  (hence 
M o C M ~ C . . ' C M k ,  a~UM~.~-M~) and each Mt in K. So /~'  will be 

(M~ ....  ,Mi~,a~ . . . . .  a'o) etc. We denote k by k(/~),  and Mk (or IM I) by 

dom(M).  
(2) If M, M'  are candidates then /~ _-__/~' means k (~,]r) = k (M') and at = a't 

(for l < k ( M ) )  and MtC_M~ (for l<=k). Also ,Q=<*M' means there is a 

one-to-one monotone function h from {0,..., k( /~) , . . .}  into {0 . . . . .  k (M' )  . . . .  }, 

such that a~ = a'ht~), M~ C_ M'h(t). Clearly those are partial orders and M =< M'  

implies M =<*/~'. 
(3) We call /~ an M*-candidate if M0 C_ M*. "An embedding of ( f r o m ) / ~ "  

means "an embedding from M~", /~ E M means /~ E M~, etc. 
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(4) We call M , M '  equivalent if k()Q) = k(/Q') ,  Mt = M't for  l =< k and for 

every  M~ . . . . .  M',', the following are equivalent:  

(i) /~  _-< (M~ . . . . .  M',;, ak-,  . . . . .  a0), 
(ii) M '  <=(M'~ . . . . .  m~',,a'k-~ . . . . .  a/,) .  

Clearly this is an equivalence relation. 

(5) Let  M_-<WM " if for some A4' equivalent  to M",M<=*I(4 '. Clearly __<w is a 

partial order ,  and ]Q__<wlQ, ~ / ~ _ < *  ~t,.  

(6) We call f an embedding  of ~t" into M '  if for  some strictly increasing h:  

{0 . . . . .  k(/Q")}---~{0 . . . . .  k(M~)}, f embeds  M7 into M~,) ,  f ( a ° )  = a~,). 

DEFINITION 1.6. Let  M * E  K ' ,  I a set of m-sequences  from M*.  We call 

(M,b )  a witness for  ( M * , I )  if ]Q is an M*-candida te ,  /~ an m-sequence  from 

M, b ff M0 and M _-</Q',/Q' an M*-candida te  implies there  is an embedding  f of 

ZQ' into M* over  M;~, such that  f(tT)~ I, and / ~  m[~.* 

MAIN THEOREM 1.7. Assume (>., holds. Suppose R is K-nice. Then there is a 

model M* such that: 

(a) M *  E K ' (N , ) .  

(b) For any m < w and uncountable set I of m-sequences from M*,  there is a 

witness for (M*, I). 

(c) M * =  (.J . . . .  M.,  M.  (a < w~) increasing and continuous, each M~ is 

countable, M. E K'(N~)) and for some b., R ( M . , M . + , , b . )  holds. 

(d) I f  M C_ M~, R (M, N, a)  then there is an embedding f of N into M* over M, 

such that for some [3, f ( a )  = b~. 

(e) I f  K is very nice and R is K-very nice then each M.  is in K H. 

(f) Mo = [..J . <~ M(~ and if M~, C_ N ~ K, N cannot be embedded into M,, over M~) 

then for some k > n, M~, N cannot be amalgamated over M~,, N E K cannot be 

embedded into Mo if for some k, M~, N cannot be amalgamated. 

PROOF. See last section. 

When  applying the theorem,  it is helpful to notice the following two claims: 

CLAIM 1.8. (1) If  (M,b ) is a witness for ( M * , I )  then so is every (M' ,b  ) where 

M ,  an M*-candidate. Moreover if t(4 <-_ then there is an M*- 

candidate A-I" isomorphic to M '  over 1(4, provided that K is very nice. 

(2) So applying (c) of 1.2(1), if we are given some finite A C M* we can assume 

our witness (M, b) is such that A C Mo. 

t Note that the last "'/~ ~ Mj," say_.s, in particular, that/~ is not in M,, in a quite strong sense. In fact if 
K is very nice it says: "if M _-< M' then /~li~ M[," (we could also have this taken as a definition). 
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(3) In (1), 1~-_<*/~' and even M<=Wl~4' suffices. 

CLAIM 1.9. Suppose (M,b)  is a witness for (M*,I ) ,  k = k(/Q) and N ~ K 1 
and there are embeddings f, of NI into N over Mo for n < a, where a <= to such that: 

(*) for l <k,  n <a, 

R(  ( ,,,<.l"J f,,(Mk)U f,(M,) t N' ( I,.J,,<, fr,(Mk)U fn(M,+,))N,f.(a,) ) 

or even 
(*)' there are Ni C_ N increasing, f,(M~)C Nk(n 1)+t such that 

R(Nk~,-ll+,,Nk~, ~)+t+~,f.(at)) holds ( forn<a,  l<=k). 

Then there is an embedding g of ([,.J,[,(Mk))N into M* over Mi such that 
g(f,(b)) ~ I for every n. 

We shall call (f,()Q),f,(/~)) copies of (M,b) over Mo. 

DEFINITION 1.10. R is trivial (for K)  if R ={(M,N,a):MC_ N, a ~ N - M ,  
M E K ,  N E K } .  

CLAIM 1.11. Suppose K is nice. 
(1) There is a unique trivial R, Rr(K). 
(2) R r ( K )  is K-nice if[ 1.2(c) holds and K has a non-maximal element. (Note 

1.2(c) is a slight strengthening of the amalgamation property for K.) R r ( K )  is 
K-very nice iff Rr(K) is nice. 

(3) M,M' are equivalent (for K, Rr(K)), iff k( ]Q)=  k(~t ') ,  Mt = M~ (for 
l < k), and at ~(Mz,a'~}, a'tE(M~,a,) (for l < k). 

CONCLUDING REMARKS. (1) We could have worked in a more general context 

(e.g., the objects will be in a category of models, the morphisms may be 
homorphisms), or a less general one (e.g., deal with very nice K and R).  

(2) When the author lectured this in Madison 79, he took a somewhat different 

approach, natural for model theory rather than for application to algebra. The 

theorem says that for any countable (and consistent) TC_L(Q), there is an 

uncountable model M* s.t.: 

(*) for any m < to and uncountable set I of m-sequences from M, there is a 

witness ~(xo,g . . . . .  £ b )  (b C M)  which means: for any countable A C_ M, 

M~( Oxo) (3 go) ( Qxl) (3 g~)... (3 e ~ A )~ (Xo, go . . . . .  x,, y~, ~?,/~) 

and if # E M, and for every countable A C_ M, 

M~Qxo3go... (3e ~_ A )[q~(xo, go . . . . .  ~?,/7) ̂  q,(Xo, yo . . . .  , ~, #)] 
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then for any countable A C_ M 

M ~ Ox,,3 ~o"" Ox, 3 y, (3 77 E I) [77 ff A ^ q~ (x+,, 37. . . . . .  77, b) ^ q~ (xo, 37~, . . . . .  z7, f)]. 

(3) By small changes in the proof of 1.7 we can guarantee that in Definition 1.6 

we can demand /Tff A for any countable A C_ M*. 

§2. Boolean algebras: the old material 

Baumgartner and Komjath [1] proved 

THEOREM 2.1. Assume ~(N,). There is an uncountable Boolean algebra B, 

such that it has no uncountable chain or antichain, i.e., among any N, elements 

there are two comparable and two incomparable (in the natural partial order of B ). 

Rubin [7] got stronger results, e.g., 

THEOREM 2.2. Assume ~(~¢~). There is an uncountable Boolean algebra B, 

such that among any N~ elements of B there are three distinct ones a, b, c such that 

a A b = c .  

DISCUSSION. How does Theorem 1.7 help to prove such theorems? 

By 1.7, 1.9 any problem of the form "find an uncountable model M* such that 

among any ZCt elements there are n such that . . . "  can be reduced to a problem of 

amalgamation of candidates (which are finitely generated). We let K be the 

family of all finite Boolean algebras and R be trivial, i.e., 

R = { ( M , N , a ) : M ,  N E K ,  MC_N,  a E N - M } .  

Obviously (check the definitions): 

CLAIM 2.3. K is very nice and R is K-very nice. 

Our task is very clear. We are given a candidate/Q and b E A~t.* For Theorem 

2.1 we need to amalgamate two copies of (/Q, b), (A~t~, b +) (l = 1,2), over Mo so 
that bJ_- < b 2 and so that (in another amalgamation) bt,b 2 are incomparable. 

However the amalgamation has to satisfy (*) from 1.9, which means, in our 

context, that a~ ~_ (M~,M~). As the class of Boolean algebras is a variety, if 

there is such an amalgamation it is the free amalgamation of M~, M~ over M0 

(k = k(/~)) with the added relevant relation (b ' -<_ b: in the first case, none in the 

second). 

* Of course, such that ]Q _-< ~Q' ~ b ff M~. 
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The above discussion is quite general, and we have not used the specifications 

of our problem. 

CLAIM 2.4. Let K ,R  be as above. For any 1(4, there is 1VI', lQl<-_w]vI ', and 

q E m~, (l < k =aef(k(M)) such that k(~,qr) = k(M')  and: 

(a) co . . . . .  ck-~ are disjoint atoms of M;,  

(b) M~ = (M~,a~ . . . . .  a'~_~), 

(c) 0 <  a~< q. 

PROOF. Case L k = l  

Remember  that any finite Boolean algebra is atomic. So Mo,MI are atomic. 

Choose an atom c of Mo such that c n ao ff M0 (there is such c as otherwise 

ao = U {ao N c : c E Mo, c an atom} E Mo, 

contradiction). Choose atoms c°,c ~ of M~, cO_- < c n a0, c1=  < c - ao (exists - -  as 

c n ao ~ M necessarily it is ~ 0, c and as M ~ is atomic). 

Let M'~ = M1 and M~ be the subalgebra of M1 generated by {c 1 U c 2} U {c ':c '  

an atom of Mt but c'~c~,c2}.  Now let co=cXUc  2, a~=c  ~ and we finish. 

Case II. Any  k. 

Let N be a Boolean algebra with exactly k atoms c* . . . . .  c*_~. Let  MY be the 

free product of Mt and N. So clearly M < / ~ *  and c* n a t -  U,,<tc*m ~ M*.  

Now "below" each c* we repeat the previous argument. For each l choose an 
o atom c't' of M* such that c~'= < c * -  U, ,<tc*,  ct O at Z M*. Then choose atoms 

, o ~ o ~<cOna~, c~<cO_a, .  cl,c7 of M* such that cl<=ct, cT<=ct, c t=  = 

Let c t = c l U c ~  for l < k .  

Let M "  be the subalgebra of M* generated by {c:c an atom of M~ but 

c ~  cl ,c~ for m =< l < k}. It is easy to check that f l ' =  (M* . . . .  ,M*,c~_~, . . . ,c~)  

and co . . . . .  c~_~ satisfy the conclusion of the claim. 

Let us return to the theorems. 

PROOF OF THEOREM 2.1. Follows by 2.2 because if a n b = c, a, b,c distinct 

then c < a, and a,b are incomparable. 

PROOF OF THEOREM 2.2. We use 1.7 to get M*, for K, R as above. Let I _C M* 

be uncountable so by 1.7(b) there is a witness (/~t,b) for (M*, I ) .  By 1.8(3), 

1.11(3) we can assume 1~ is as in 2.4, and for every l < k ,  a~-<q, and 

b n ct c {0, at, q }. 

Le t  ~ l ,  ~ 2  be two copies o f / ~  freely amalgamated over M0 and define )~t ° by 

a ° = a ~ n a ~ ,  M ° = ( M ~ , a  ° . . . .  , a ° - l ) .  
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It is easy to check that b' (q b ~ -- b ° (b t the copy of b in ~ t ) ,  and that (*) of 1.9 

holds, so by 1.9 in I there are distinct b°,b~,b "- such that b ~ A b 2 = b °, as required. 

In fact the above proof proves more: 

DEFINITION 2.5. A Boolean algebra B is 1-Rubin if ]]B ]] = l~,, and for every 

uncountable I_C B, there are disjoint non-zero co . . . . .  ck ~ E B  and ck E B  

disjoint to them so that. for every c'; < cl < ct (l < k), there is x ~ I such that: 

{_J c',' U ck <- x <= (_J c ~ U c~ (so c',' < x n c, <= c J ). 
l '<k  l < k  

DEFINITION 2.6. A Boolean algebra B is called m-Rubin if: IIBII = ~1 and for 

any uncountable set of m-sequences from M there are disjoint co . . . . .  ck-~ and c 7, 

(n < m) disjoint to them and terms 

~-. = ~-.(xo . . . . .  x~_ , )  = U ~"o 
l < k  

for n < m such that: 

(a) r', ~ {0, x, c, - x, c,}. 

(b) for every c l < c ~ < c t  ( l < k )  there are d~EB,  c l < d ~ < c ~  and b =  

(bo . . . . .  bm_~)EI such that, for n < m, 

b, = r(d,, . . . . .  dk-,) U c~. 

DEFINITION 2.7. A Boolean algebra B is Rubin if it is m-Rubin for every m. 

Rubin [7] constructs 1-Rubin Boolean algebras and investigates their proper- 

ties; the author noted the generalization to n-Rubin (see [10]). 

THEOREM 2.8. Assume O(N,). Then there is a Rubin Boolean algebra. 

§3. Boolean algebras with extra predicates 

When we want to construct Boolean algebras of power ~i with extra 

properties it is sometimes advisable to expand the Boolean algebras by more 

relations (or functions). 

Baumgartner and Komjath proved in [1] (and Rubin [7] strengthened the 

result to the best possible one): 

THEOREM 3.1. Assume ~ ( ~ ) .  There is a Boolean algebra B such that: 

(a) liB [[--  N,, 
(b) among any NI elements of B, there are two comparable and two incompar- 

able elements, 
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(c) l - - { a  :{c :c E B,c <= a} is countablel is a maximal ideal. 

PROOF. Let 

K = { ( B , P ) : B  a finite Boolean algebra, P a maximal ideal of B}, 

R = { ( M , N , a ) : M C _ N ,  a E N - M a n d b C P M i m p l i e s a N b ~ M } .  

Notice that if M E K ,  there is a unique atom c ~ M  such that pM__ 

{ b E M : c N b - - - 0 } ,  and if ( M , N , a ) ~ R ,  a - c E A s / ,  a n c ~ M ,  under this 

context. 

CLAIM 3.2. (1) K is very nice, R is K-very nice. 

(2) For any IQ there is ~t' ,  ]Q __< M'  and for every l < k(IQ'), M'H -- (M't, a'~) 

s.t.: 

Let q be the unique atom in M't - P(M'3. Then a'~ - q ~ M~ and M~ is generated 

by M~,c0 . . . . .  q, and co >= cl >= .... , so using 1.8(3) we will be able to assume 

a Ii ~ Cl+l - Cl.  

PROOF. (1) Trivial. 

(2) Among all N, M _<-N, M~c~ ) = NktM*) choose one ~r* with the maximal 
k 2 M * ~  and then maximal M*-z etc. (exists as Mk(~) is finite). Suppose 

M*+I # (M*,  a*). Let q be the unique atom in M * -  P(M*) ,  so 1 -  q ~ P, so 

a* - q ~ M*. If there is x E M*+~ - M*,  x n q = 0, then we can replace M* by 

(M*,  x) (this is allowed - -  check the definition of R )  and we get a contradiction 

to the choice of ~t*. If not, let do , . . . ,  dr, be the atoms of M*t+~, which arc =< q, 

and w.l.o.g, do E M*+~ - P(M*+ O. If m = 0, a* E M*,  contradiction: if m -- 1 

then M*+l=(M*t,a*t) ,  contradicting an assumption. So m :>1, w.l.o.g. 

a~ n do # at n d~ and define: M" is M* if n =< I, (M*,dr . )  if n = 1 + 1, M* if 

n > 1 + 1 and a ;  is a * if n < l, d~ if n = l, a *~_: if n > l; M'  contradicts the choice 

of 34". 

CONTINUATION OF THE PROOF OF 3.1. Totally parallel to that of 2.1, 2.2: from 

any ~t~ member elements of P(M*)  there are distinct a,b,c, a N b = c. 

Quite naturally Rubin has asked whether the Baumgartner-Komjath  

Theorem 2.1 implies his. 

THEOREM 3.3. Assume ~(1¢~). There is an uncountable Boolean algebra, 

which is not 1-Rubin, but among any I¢~ elements there are two comparable 

elements (in fact there are a,b,c such that a n b = c). 

REMARK. In fact all conclusions of Rubin [7] on configurations for 1-Rubin 

(and the parallels for n-Rubin) hold. 
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PROOF. Let T be the set of the following axioms (P,R one-place, two-place 

predicates): 
The axioms of Boolean algebras 

R(x,y)---~ x <= y 

R(x,y)^  x < xr <- yl ~ x ---> R (xt , yl) 

R(x , x ) - ->- I  P (x )  

 R(0,1) 

The intended meaning is that P will be an uncountable set exemplifying the 

Boolean algebras not 1-Rubin, and R a set of intervals disjoint to P. 

K = {M : M a finite model of T}. 

R = { ( M , N , a ) : M C N ,  M E K ,  N E K ,  a E N - M }  (i.e./~ is trivial). 

CLAIM 3.4. (1) K is very nice and R is K-very nice. In fact if M C No,Nt ,  are 

in K, the free product M '  of No, N1 over M is in K (i.e., as a Boolean algebra it is 

the free product, P ( M') = t '( No) U P(N,) and R (M') = {(a, b): for some l ~ {0,1}, 
( a ' , b ' ) E  R(Nt) ,  M ' ~ a '  <= a <= b <-<_ b'}. 

(2) For every candidate ~4 there is ~I', IVI <w IV1' such that 

(i) there are atoms co . . . . .  c~ ~ of M~ (k = k(lVl')) such that at < c~ (l < k)  

and M~ = (M~,a~ . . . . .  a't t), 
(ii) k(M) = k(M'), Mk = M/,. 

(3) I f  M E K, c < b E M, M is in K, then there are a ,N,c ' ,b ' ,  such that 

R ( M , N , a ) , N ~ " c  < c ' <  b ' <  b ^ R(c ' , b ' ) " .  

(4) I f  M UK,  there are a, N such that R ( M , N , a ) , N ~ P ( a ) .  

PROOF. (1) Easy 

(2) Just like 2.4. 
(3) N, as a B.A., is freely generated by M,c ' ,b ' ,  except the relations 

c <_<_ c' <= b' <= b. 

(4) N, as a B.A., is freely generated by N,a (remember M ~ R ( 0 , 1 ) ) .  

CLMM 3.5. Let ](4 (k = k(]V1)) be a candidate, Co . . . .  ,ck-, atoms of M0, 

at < cl, Mi = (Mo,ao . . . .  ,at-l). Suppose ~7I m (m < n) are copies of 1V1 over Mo, 

and M 7  C N and 

(i) P(N)= U.<.P(M~"),  
(ii) R ( N ) =  {(a' ,b'): for some m, ( a , b ) E R ( M ' ~ ) ,  N ~ a  <=a'<=b'<b}, 

a t , . . . , a t  ), (iii) for any l < k, m < n, aT ~: (q, o m-~ 
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(iv) for any l < k, m(1) ,m(2 )<  n, aT"'fq a7"2~0, 

(cz - aT'°))f3 (c~ - d?C-~) ~ O. 

Then condition (*) of 1.9 holds. 

PROOF. Left to the reader, t 

CLAIM 3.6. Let B be a finite Boolean algebra and J C B is such that: 

(1) Ao~ja~O,  U , ~ j a ~  l, 
(2) J ={a,,  :m < n} is such that atf~ (ao . . . . .  all). 

Let M* be as in 1.7 (for our K,R).  
Then for any uncountable I C_ B, there is an embedding of B into M* (as a 

Boolean algebra) such that J is mapped into I. 

PROOF. By 3.5. 

PROOF OF THEOREM 3.3. Immediate by 1.7, 1.9 and the previous claims. 

§4. K-Inevitable models 

DEFINITION 4.1. For a class K of models and cardinal A, M is called 

K-A-inevitable if M can be embedded in every N E K, IINII -A. For h = 0 we 

omit it. 

REMARK. Note that M may be not in K. 

CLAIM 4.1. If M is K-A-inevitable, K'C_ K, h '_-  > A, M'_C M then M' is 

K '-A '-inevitable. 

CLAIM 4.2. Suppose K is very nice. Then: 
(1) K u has, up to isomorphism, a unique countable model M,,, which is not 

finitely generated, 
(2) MMo is homogeneous and universal (for K~), 

(3) MRo is KH-l~lo-inevitable. 

DEFINITION 4.3. For K nice and R K-nice, let 

K,,[R] " = { M  UK, , : for"  every MoEK,  N o E K  and a such that R(Mo,No,a) 

and N, Mo C_ N C M, IINII_-< 
there are N', N" N C N' C N" C_ M, 

*Condition (iv) of 3.5 is needed to show "R(x,x)~'-aP(x)'" holds in N. 
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IIN"II =~ No, and an embedding f of No into N" over M(, 

such that R ( N ' , N " , f ( a ) )  

CLAIM 4.4. Suppose K is very nice and R K-nice. Let 

R ' =  {(M,N,a): for  some N', R ( M , N ' , a ) ,  M C_ N'C_ N, 
and M, N, N' are finitely generated }. 

K . , [RI  '~ ' Then R '  is K-very nice and " = K~,[R ]. 

PROOF. Easy. 

THEOREM 4.5. Assume ~(1~1). 

If  K is very nice and R K-nice then the following are equivalent: 
(a) There is an uncountable K"~,[R ]-inevitable model. 

(b) There is a candidate f4 and b E d o m ( / ~ ) - M o ,  k = k (M)  such that for 

every n: 

(*), Suppose N~, N'i ( i <-_ nk ), fm ( m <-_ n) are such that: Ni C_ N'i C N~+ I , fm maps 

M~ inw Nmk+, f, n rMo = the identity, and R(N'k+,Nmk+~+l,fm(a~)). Then the 
isomorphism type of (@(b) . . . . .  f , (b )lN, k,fo(b ) , . . . , f , (b  )) is determined by JQ, b 

and n and fro(b) (Z N,, . 

PROOF. By Claim 4.3 we can assume R is K-very nice, and in (*) of 4.5 let 

N~ = N',. 

(b) ~ (a) 

Let M* be in K,,~[R]. 
L e t / ~  be as in (b), and w.l.o.g. Mo C M*. We define by induction on a < wl, 

models N" C M*, N'., (l < k)  and embeddings f~ of dom(h4) into M* such that: 

(i) ][N~][=<~(,; a < f i  ~ M o C _ N ~ C N ~  and for ~ limit N~ = I,.J,,<~N~, 

( i i)  N~ = N..o C_ N ' .  E N.., C_ N'., C " .  C_ N~.k = N'..k C_ N~ +,, 
(iii) f. embed Mz into N.,t and R(N ' , .N~ , . , , f . ( a t ) ) .  

This is done by induction on a. If we have defined for every/3 < a, it is easy to 

define N. (M,, for a = 0, N.-t,k for a successor [..J~<.N~ for a limit). Now we 

define f .  t M .  N.,t, N ' j  by induction on I. Remember  f. [M0 is the identity. 
H t N.,o=N. .  If f.  tM. ,  N.,~ are defined as M * ~ K . , [ R ]  there are N~.. N.,z+~, 

f. t Mt÷~ as required (in (ii), (iii)) (see Definition 4.3). 

For l = k, N'~,k = N.,k. 

Let b~ = f . (b) .  Now by (b), for every a ( 0 ) <  . . .  < a ( n ) <  Ol, the isomor- 

phism type of ((b~o),. . . ,  b.(.))M*, b.(o) . . . .  , b.(.)) depends on /~ ,  b and n only. So 

the submodel of M* generated by {b. : a  < ~o,} is K." , [R]-  Nrinevitable. 
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REMARK. Note {b, : a  < ~ol} is an indiscernible sequence, i.e., for any a ( 0 ) <  

• .. <o~(n)<co~, / 3 (0 )< - . .  </3(n)<o)~ there is an isomorphism f from 

(b~(o) . . . . .  b~(,)}M, onto (be(o) . . . . .  b~(.))M., f(b~(,))= b~(1). 

(a) ~ (b) 

We use 1.7 to build a pair of models in K,",[R ], with a f.g. approximation being 

a pair of f.g. approximations. Formally let the language of K, L be {Pi, Fs : i < 

io,j < jo}. Let L t = {P~i,FI:i < io,j < j0} (for I = 1,2) be disjoint copies of L. For 

M E K ,  /E{1,2} let M ['] be an L'-copy of M, i.e. [Mm[ = [M[, (p~,l)M[,, = p~, 

(F[']) Mm = Fff. Let K '  = {Mm: M E K}. 

Now we define LP, KP: 

L " = L ' U L ~ U {P, ,P2,F,,F2},  

P~,P2 monadic predicates, F1,F2 monadic function symbols.* 

K p = { M : M  an LP-model, P~ ,P~ ,  are disjoint; for l = 1,2: 

( M t P ~ ) I L t E K  ' F~l(x~ . . . . .  x , ) = x ~ i f { x ~  . . . . .  x.IC:P?, 

Ft r(P~ u P~) is the identity and for x E ]M I-  P'?' u P~, F,(x) ~ P?},** 

and we define R p, (M,N,  a)  E R p iff M E K p, N C K p, a E IN I -  P~  U P~' and 

for l = 1,2, R ( ( M [ P ~ ) r L ~ , ( N r P ~ ) r L ~ , F t ( a ) ) .  Easily K p is very nice and R p is 

nice. Let M* be as in 1.7 for K~',R p. Let M* = ( M * [ P 2 * ) r L t ;  we can prove 

M* E K~[N~]. We shall prove that no uncountable member of K is embeddable 

to both * * M~ ,M2.  If g, embed N into M*,  IINII = N,, g E g ' ,  let a~ E N (i < w~) 

be distinct and let I = {(g~(a,),g2(a,)):i < w~}. So by 1.7(b) there is a witness for 
(M*,I) ,  say ( M, b ) b = (b °, b ~) (so b z E Pt ). We can naturally define ~(-ll, b t for 

l = 1,2. If ()Q',/7 ~) does not satisfy (*) of (b), and we have distinct ways to 

amalgamate, then we shall get a contradiction. As we have said in the beginning 

of the proof, R is very nice so (*). is simplified (i.e. NI = N~). Let / ~ =  

(Mk . . . . .  M~, Mo, ck-,, • •., c,). 
So suppose that for a = 0,1, we have n, and N,,~ for i < nk (where k = k (l~,I)) 

such that: 
(a) N~,~ C N~+~,~, f,.,, an embedding of M] into N,,k+~.,, f,,,, r M~, = the identity 

and R(Nm~+,,,,N,,~+t<~,f,,(q)) holds. 

(b) There is no isomorphism from (fo,o(b~) . . . .  , f . - 1 ,o (b l ) )N  .... (as submodel 

N.-k,o) onto (/O,l(b~) . . . . .  f,_~,l(b~))~.~.l which maps/t,o(b l) to f~,~(b ~) for l < n. 

• If we allow in §1 R(M,N,a) for 5 a finite sequence,  K ~ will be simplified. 
• * Of  course,  every M ~ K e is required to be finitely generated so [ M I - P ~  u Pz ~ is a finite set. 
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We can also find Ni.2EK(i<-_ nk) and fro,2 (for m <= mk) such that fro,2 

embedded  M~ into Nm~.~,2 and R (Nm~.~.2, N,~k+~.L2,fm (Ct)) holds. W.l.o.g. there  is 

no isomorphism from (fo.~(b ~) . . . . .  f, ~,l(b~))N .... onto  (fo,2(b ~) . . . . .  f ,  j,2(b-))N .... 

which maps ~6.~(b') to )~,2(b z) [otherwise in terchange Ni,,, fro., with N~,o, fro,o]. 

By Defini t ion 1.4 w,l.o.g. N~,~ C K (in fact we could do this in (*),).  W.l.o.g. 

N~,~, N~.~ are disjoint. 
M I 

= = M i+l We can now define M * ,  (Mi rP~ )rL~ N ~ f o r l ,  1 , 2 a n d a * ~ E  * is such 

that F~(a*)=f(a~) for l = 1,2. 

So we can find i~,< i~ < . . .  < i,_, such that for  l = 1,2 there  is an embedding  g~ 

of (fo,t(b ~) . . . . .  f,-,,t(b *))N°~.,into (M* t P,)I L, ,  gt(fm,,(b ~))= g~(a~). We get now a 

contradict ion easily. 

CLAIM 4.6. For any nice K, there is a maximal K-nice, R, i.e. for every other 
K-nice R',  R'C_R. In fact R(M,N,a) ,  M ' C _ M C _ N C _ N ' E K  implies 
R ( M ' , N ' , a )  so R is K-very nice. 

PROOF. Define inductively R~: 

Ro={(M,N,a) :MC_N,  a E N - M ,  M E K ,  N E K } ,  

R~ +1 = {(M, N, a ) :  R~ (M, N, a )  and for every  M '  E K, 

M _C M' ,  there  are N ' , f  
such that M '  C_ N' ,  f is an embedding  of N into N '  over  M, 

f (a)  ~ M' and R~(M',N, f (a))  holds}, 

R~ = ("] R~ for 8 limit. 

Clearly R~ is decreasing,  so as K has, up to isomorphism,  only N0-members, 

each countable  and fn i te ly  genera ted ,  for  some a < to~, R~ = R~+~ hence 

/3 < a ~ R~ = R e. Now R~ is as required.  

Now we turn to a specific application. 

CLAIM 4.7.* Let G be a countable existentially closed group 

K(G)  = {M : M a finitely generated subgroup of G}, 

R (G)  = RT(K). 

Then K(G)  is very nice, R (G)  K-very nice, and K(G).", = K(G)~[R(G)].  

'This is known; the way to prove it is by Zeigler's theorem: if G is an existentially closed group, P 
a recursive set of equations and inequation with finitely many parameters which is realized in some 
group extending G, then it is realized in G. 
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THEOREM 4.8. Assume O(N~). 
For G countable existentially closed, there is no uncountable K(G)X-N1 - 

inevitable model. 

PROOF. We shall use Theorem 4.5, of course. So let a candidate /~t and 

b E Mk -- M0 (k = k(/Q)) be given. We shall contradict (*)3 from 4.5(b). This we 

do in two steps. So let (Mt, b') (l =0,1,2) be three copies of (A~t,b) over Mo. 

gt:M-->I(4~ is isomorphic. Now first we show there are two possibilities to 

amalgamate the M~, ( l=0 ,1 ,2 )  over M0 as groups, so that (b°,b~,b 2) are 

different. The second step is to show we can have such amalgamation in K(G).  
The second step is as in the proof of 4.7. 

So we concentrate on the first step. 
Mk,Mk ,Mk  over Mo and call it N*. For Take the free product of o 1 2 

{1, I(1),I(2)}={0,1,2} let N~ be the normal subgroup of N* generated by 

{g,o~( c )-~g,(2~( c ) : c E Mk }. 
Notice N*/No is not good as an amalgamation because g2(ao)E (go(Mk)t2 

g~(Mk)). Similarly N*/NL is not. But N*/No tq N~ is good as an amalgamation. 

Now in N*, [bob; 1, b~b~ ~] is not the unit (being free amalgamation) ([x,y] is 

xyx ~y-~, the commutator) but bobj ~ E N~, blb~ ~ E No so [bob~ ~, b~b; ~] E No n 
NL, hence in N*/No (q N~ it is the unit. 

REMARK. This kind of proof of non-uniqueness can be carried out for many 

classes (we then have to replace "the normal subgroup generated by. . ."  by "the 
congruence relation generated by {g,~(c)= g,2~(c):c E Mk}". 

§5. Banach spaces 

Our result in this section is the following theorem. Note that 5.1(A) solved a 

problem of Davis and Johnson [2] and was announced in Abstracts of the Am. 

Math. Soc. 5.1(C) gave another proof of a result of [8] (but the example there has 

some additional properties), and 5.1(B) solves a problem. 

I would like to thank Johnson for explaining to me the problem from [2] and 

how to clean up the proof from computations. 

THEOREM 5.1. Assume O(N1). 
There is a non-separable Banach B such that: 
(A) Among any NI elements, one belongs to the closure of the convex hull o[ the 

others. 
(B) For every non-separable closed subspace B~ of B, B/B~ is separable. 
(C) For any (linear bounded) operator T from B to B, there are a real number c 
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and a (linear bounded) operator T, with separable range, such that 

T = c l  + T~ (1 is the identity operator). 

REMARK. Note that B = [,.J,<~,B~, B~ increasing, continuous and separable, 

and each B~ is a Gurari space. Also B is l~-predual. 

The theorem is proved by the following lemma, which contains more 

numerical information. We can easily give more similar conclusions to 5.2, and 

even phrase the general case (just look at the proof of 5.2(4)). 

LEMMA 5.2. There is a non-separable Banach space B such that: 

(1) For any y~ E B (i < ~ol) and e > 0 there are i < j such that 

II y, - y,/2 [[ <-II y, II/2 + e. 

(2) Forany y, E B (i < ~oi) a n d e  > 0  a n d n  > 0  there are i (0)< . . .  < i ( n ) <  oJ, 

such that 

II y,,o,- (Y,o~ + Y,c-, + " "  + y,,,))/n II <- [I y,,o, ll/n + e. 

(3) If  y,,z, ( i < w,) are in B, IIY, II-- 1 --IIz, tt Ilz, - z, II--> 1 - 1/n (for i ~ j < w~), 
e > 0 ,  then there are i (1)< .-. < i ( n ) <  i(n + 1)< . . .  < i(3n + 1) such that 

(4) / / y , ,  z, (i < oJ,) are in B, II y, II = 1, c a rational number and for i < t~ 

d(zj,(y,,zj,yj))>= c ((y,,zj,yi) is the subspace {y,,zj,yi} generate), then for any 

even n and e > 0 there are i(O) < .." < i(n + 1), such that 

~ ( - 1 ) ' y , . , [ _ - < l + e ,  "~ ( -1 ) ' z , ,o  >= c n / 2 -  e. 

PROOF OF THEOREM 5.1 FROM LEMMA 5.2 ~. 

5.1(A). Let yi ~ B (i < ~o~); if no y~ belong to the closure of the convex hull of 

{yj : j ~  i}, then for every i for some n ( i ) >  0, the distance from yi to the closure 

of the convex hull of {yj : j  < i} is > 1/n(i) .  As there are only countably many 

n(i)'s, for some n, A ={i  < oJ,: n(i)  = n} is uncountable. Now {y~ :i E A }  does 

not satisfy 5.2(2) for n + 1, contradiction. (Note that we prove that some i 

belongs to the closure of the convex hull of {yj : i < j < Wl}.) 

5.1(B). Let B, _C B be 

separable. Choose n > 2, 

that II z, II = 1, 

a closed non-separable subspace, with B / B I  non- 

and then choose by induction on i < co~. z~ ~ B1. so 

d(z , , (z j  :j < i)) > 1 - 1/n 
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(where (A)  is the linear span of A). Next choose by induction on i < toj, y~ E B, 

such that 11 yi II = 1, 

d(y, , (B U {Yi:J < i}))=> 1 -  1/n 

(possible by the non-separability of B~,B/B1 resp.). Now use 5.2(3), and get a 

contradiction to the choice of yi~,+l). 

5.1(C). For any B, C B let c(T,B,)=sup{d(Tx,(B,,x)):x~B, llxll=l}. If 
for every separable B1, c(T, B I ) > 0  we get contradiction by 5.2(4), and if for 

some separable B, c(T,B~)=O, we can prove 5.1(C). 

PROOF OF LEMMA 5.2. We shall prove that there is a vector space M* over the 

rationals, with a norm, which satisfies the conclusions of 5.2, moreover without 

the e. It is easy to check that the completion of M* is as required. 

Now we define K as the family of finite-dimensional vector spaces M over the 

rationals, which are also norm spaces, where the norm has the form 

Ilx ]] = Max{[f(x)l : f  E F} 

where F = FM is a finite set of (linear) functionals, from M to the rationals, and 

w.l.o.g. [[/[I = 1 (by the definition {If[f- < _ 1, and if I[f[[< 1 we can omit it without 

changing the norm). In the proof a functional from M means a rational one. 

FACT a. K is a very nice family. 

Being a nice family is trivial. For the "very"  we first have to find a joint 

embedding to Mo,M~ E K. Let N = Mo x M, (direct product as vector spaces), 

for any functional fo,f~ of Mo,M~ resp. (fo,fl), defined by (fo,f~)(x,y)= 
fo(x)+fl(y), be a functional of MoX M~ with rational values. We let 

FN = {(fo,f,):fo E FM,~,f, E FM,}. 

So by FN, N is made into a norm space, and the obvious embedding completes 

the construction. 

We can do a similar construction for amalgamation Mo, MI over M. Let M* be 

the subvector-space {(x, - x ) : x  E M} of Mox M~; let N = MoX MdM*. By the 

Hahn-Banach  theorem, for every functional g of M, ]]g ]] =< 1 and I = {1,2}, g has 

an extension g[M,] to a functional of M~ of norm ~ 1; we can assume that g = 0 

implies g[M,] is 0. Note also that any functional f of Mo x M~ which is zero on 

M*, defines naturally a functional f /M* of N with the same norm. 

We let 

F~¢ = {(f, (.f [ M)[M~ ])/M* : f E F,o } U {((f [ M)[Mo], f)/M* : f E FM, }. 
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We leave the details to the reader. 

We shall use the notation here later. 

Now let 

R = {(M,N, a) :  M C_ N both in K, a E N and for some functional f 

of N, Ilfll = 1 : l la l l ,  f r M =  o,~ and Ila II-- 1}. 

FACT b. R is K-very nice. 

The only part of Definition 1.2 which is not totally trivial is 1(c), so let 

M C M'  E K, (M, N, a )  E R. We let M* = {(x, x) :  x E M}, N = M'  x N/M*,  and 

as w.l.o.g, the functional f such that f(a) = 1 = [[a II, frM = is in FN, and as 

( f [M)[N] = 0 (because f [.M = 0), we can act as above. 

So let M* be the model for which Theorem 1.7 asserts its existence. We shall 

prove that M* is as required in Lemma 5.2. In each case we have an uncountable 

set I of elements or pairs, and by 1.7 it has a witness. Using it we prove the 

requirements of 5.2. 

In all cases we are given a witness (M,b) for /. We let k = k()Q), 

N ° = M ~ " = M k × M k x . - ' × M k  (retirees),  

M+., = {(q,x .... ,q,,x ): x E Mo, ql, . . ,  rationals, Y~'~ q, = 0}, 

N,,, = N°/M+,,. 

Let ~ :Mk--->M'~, H/(x)  = (0 , . . . ,0 ,x ,0  . . . .  ,0) (i - 1 zeros, x, m - i zeros) are 

the natural embeddings we shall use. 

We can assume FM~ is such that OMk E FMk, and for any i < k, there is 1] E Mk, 

f,(ai) = 1 = Ila, II, A [M, = O~,. 
Now the crux of the matter  will be to define a finite set F of functionals from 

M~' to Q, which are zero on M+~, and define for x E Nm 

II x II = Max{(f[M+,.)(x):f E F}. 

What are the requirements on F?  

Requirement 1: For every f E F and i E [1, m] for some functional f '  of Mk of 

norm _--< 1, /-/if' = f [ Range (/-/~). 

This guarantees that 11 Hi (x)[) =< I]x 11. 

Requirement 2: For every f'EFM~ and i E [ 1 , m ]  for some f E F ,  Hif'= 

f [Range (/-L). 
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This guarantees tlH,(x)ll~ IIx II, so, together with Requirement 1, it is shown 

that the ~ ' s  are embeddings. 

Requirement 3: For every i E [2, m ], l E [0, k - 1] there is f~.~ C F, fu (Hi (a,)) = 

1, f~.t(Hi(x)) = 0 for x E M, and f~.,(tti(x)) = 0 for x E Mk, j < i. 
This guarantees that we get a candidate. 

Why do we ignore i = 1? Because Requirement 2 takes care of it anyhow. 

Note that Requirements 2 and 3 force us to put some functionals into F, 

whereas Requirement 1 restricts what functionals we may put into F. 

For functionals f~ of Mk of norm ~ 1, j~ rMo fixed, let f = ( f i  . . . . .  f ro )  be the 

following function on M~: 

[(x, . . . .  ,xm)= [,(x,) 
i=1  

(we do not distinguish strictly between f and [/M+m). Clearly f is zero on M 2. 

Assumption 4: We shall use only functionals of this form, and this guarantees 

Requirement 1. 

A particular case is f = (f, . . . .  f), f C FM~. We always put all those functionals 

into F, thus guaranteeing Requirement 2. The set of all such F will be denoted 

by F0, and F, = ~.t :i E [2, m], 1 E [0, k - 1]} and F2 = F - F0 U F~. So F, guaran- 

tees Requirement 3. 
Now we get to the specific cases, corresponding to the parts of 5.2. 

PROOF OF 5.2(1) FOR M*. So I C M* is uncountable, (M,b)  a witness for it. 

We let m = 2 ,  F , = O  

L,, = 

We want to prove I I H , ( b ) - H 2 ( b ) / 2 l l  <-_ IIn,(b)l[/2. It is enough to check that 

for every f ~ F, I f (Hi(b)  - H2(b )/2)1_ -< I1 b 11/2. 
Let /~E F1. Clearly f =  (g,g), 

f (H, (b  ) -  H2(b )/2) = f(b, - b/2)= g(b ) -  g(b/2)= g(b/2), 

so its absolute value is -_< IIg tf 11 b/2tl = IIb 11/2, as required. 
I f / ~ E  F, f ~  F, then )7= ~,1 for some I. Hence let f2,~ = (0,ft). Therefore 

f (H, (b  ) - H2(b )/2) = f(b, b/Z) = 0 + [~( - b/Z) = -/~ (b)/2, 

so its absolute value is _-< [ft(b)l/2 = II/~ II lib ll/2 --< lib 11/2. 
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PROOF OF 5.2(2) FOR M*.  W e  let m = n + 1, F3 = ~3, and let 

~, = (gl, ,  . . . . .  g ~ ,  

g{.,= {Ovk,  i~ j ,  

f, i= j .  

Let  r = H ( b , ) -  (H(bz) + " "  + H(bm ))/n. We want  I[ r II <= II bl }lln, i.e., for  every 

f ~ F. If(.~)l <= llb,ll/,,. 
For  f C F . ,  clearly [(z) = O, and for  [ E F2, f = f,,, and i > l ,  so 

So I f ( , ) l  <= [g,(b)l ln < }}g, II lib I}ln <= lib Itln, as r e q u i r e d .  

PROOF OF 5.2(3) FOR M*.  Let  (lG1,(y,z)) be the witness. 

First we show that  d(z,M,,) (the distance f rom z to M.)  is => 1-1 /n .  
Otherwise  let m = 2, and define F as in the p roof  of 5.2(1) for  M* ,  so there  

necessari ly [ [ H , ( z ) - U 2 ( z ) l l  is [f2j(H,(z)-H2(z))[  = } f t ( z ) t  for some 1, but  as 

f~ I Mo = 0~o clearly 

I f , (z)l  =< Ill, II d(z, Me,) = a(z, Me,). 

But by a hypothes is  II z, - z, II => 1 - 1/n for i ¢  j, so as (/~, (y, z )) is a witness for 

{(yi,z~): i < to~} 

II H , ( z ) -  n2(z)ll-->- 1 - 1/n. 

So we have really shown d(z, Mo)>= 1- 1/n. 
O b v i o u s l y  !1 y It = I1 z II = 1 fo r  e v e ,  more  trivial reasons. 
Now let m = 3 n + l ,  and define F so that ¢ = r ~ - r _ ~ + r 3  has norm -<_l/n 

where  

z ,=H.+ , (y ) ,  z~_=2H,(y)/n,,=, r3=(~(-1)'H.+,+,(z))/n. 

We let F2 = ~ and fu = (gl.t,g~.t .... ,g~) be defined as: 

Case a : i / n + l 
g~.~ is ~ if i = . ~  and OMk otherwise .  

Case [3: i = n + l 
As d(z, Mo)>= 1 -  1/n, there  is a rat ional  functional  g of Mk, g IMo = OM., 

g ( z )=  1 -  1/n, Ilgll < 1. Le t  
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I 0, l<=j<-_n, 
g~,,= f~, j =  n + l,  

0. j > n + l ,  ] - ( n  + 1) even, 

/ , (y ) .g ,  j > n + l ,  j - ( n + l )  odd. 

Is fi.~ as required? (See Requi rement  3.) Clearly it is zero in the places 

required,  but is g~.~ as required in Assumption 4? The only doubtful  case is fi(z)g, 
but g is rational of norm -<_ 1, and ft (y ) i s  a rational number ,  and as ][ y H = 1 (see 

above) and f~ has norm _-< 1 clearly ]fi(y)] _-< 1, so ~ (y )  is as required. 

So let us check that N~'[[= < 1/n, i.e., for every f E F ,  [f(~-)'[_-< 1/n. For f E F o ,  

f(~') = 0 so we have no problem. So we have to check f~., only. 

If i #  n + 1, case a holds, so 

Now f,.t(~'l) = 0 as i #  n + 1, and from the others only one term is non-zero, 

g~.,(y)/n or + g~.,(z)/n, so as ]] g~.,]] _-< 1, ely [] = ]]z ]] = 1 we finish this case. 

We are left with the case i = n + 1. So 

A,(O = A,(~ , ) -  ~,,(~~) +/,,, (~3) 
2 n  2 n  

=f,(y)-0+ ~ 0+ ~, (-1)'~(y)g(z)/n 
l e v e n  I o d d  

= ]~(y)(1 - g(z)) = )~ (y)(1 - (1 - l / n ) )  = )~ (y)/n.  

Hence 

If,,,(~)l ~ If,(y)lln = lit; II Ily II/n : 1/n 
as required. 

PROOF OF 5.2(4) FOR M*. So let ( /~ , (y ,z) )  be a witness for /. Just as in the 

beginning of the proof of 5.2(3), d (z, (Mo, y)) --> c. 

We let m = n, f,.~ = (gl.t . . . . .  g~), g~.~ is f~ if i = j and zero otherwise. In this 

case F3 is non-empty;  it is {~}, ~ = (g, . . . .  ,g , ) ,  where gt is zero for l odd, and is g 

for l even, where g is a rational functional of M~ of norm _-< 1 which is zero on 

(Mo,y) ,  and g ( z ) =  c (exists as d(z,(Mo,y))>= c). 
Clearly F = F,, U F~ U F2, and we only have to check that  

~ - , = ( ~ ( - 1 ) ~ + l H t ( y ) )  and , ~ = ( , = ~ ( - 1 ) ' + ' H t ( z ) )  

gets the right norm. 
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For [EFo, / 0 - , ) = / ( r 2 ) = 0  and for [ E F , ,  / (~ ' , )=(-1)t+ ' f~(y) ,  [(~-2) = 

( -  1)J+~/~(z) for some l, so clearly for ) r e  Fo U F, 

ff(v,)l ~< Ify 11 = 1, If(~-2)l<-IIzli/n. 

Now for fEF3, clearly f(r~)--O, so we can conclude that II~qll= < 1. On the 

other hand, for f E F3 

m n 

[b-2)=~g,(z)= ~ g,(z)=(nl2)f(n)=cnl2. 
l e v e n  

So clearly II T211 => cn/2. 

§6. Proof of the Main Theorem 

PROOF OF THEOREM 1.7. 

Stage L As ~,,. holds, there is a sequence (I ~ : ~ < wl limit) such that: 

(a)  I ~ is a set of m-sequences from & 

(/3) for every m and set I of m-sequences from ~ol, { 8 : I [ ~  =I~} is a 

stationary subset of ~o,. 

Stage II. The induction conditions. We define by induction on a,M~,MZ 
(n < oJ) and F~ such that the following conditions are satisfied: 

(A) (1) Ms E KI(No) has universe C_ ~o(1 + a),  Ms increasing and continu- 

ous, IMoln ~,d +/3) = IM~I for /3 < a, 
(2) S~ _CoJ infinite, M~ = U,~soM:; for n ES~:  M :  increase with n; 

M:EK, 
(3) a -- U o~so w:,  w:  is finite, ~ Q, increases with n, for/3 E w: (n E S~ 

and) w~=w~N/3 ( V y + I C w T , )  (yEw"~) and 0 E w e ;  S~ infinite 

and for /3 < a, S0 - So is finite, 

(4) for n ~ S ~ ,  /3EwT,:M~C_M~, 

(5) for c~ limit, M ~ =  U ~ R M ~ 3 =  M~ where 3' = M a x w ~ ,  

(6) if ~ = / 3 + 1 ,  /3~w: then R(M~,M~,ba) (so b~@M:); 
(B) (1) if c~ =/3 + 1, M~, C_ N E K, and N cannot be embedded into Mo over 

M~, then for some k > n (k E S~), N cannot be embedded over M~ 

into any N'E K extending M~ satisfying R (M~,N' ,  a~), 

(2) if a = 0, M :  _C N E K, and N cannot be embedded into M~ over M~, 

then for some k > n, N cannot be embedded over M :  into any 

extension N ' E  K of M~, 

(3) if a = 0, N E K, and N cannot be embedded into M~, then for some 

k > n, N cannot be embedded into any extension N'  E K of M : ,  
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(4) for every a and triple (No, N~, a)  E R, No C_ M~, No E K, N~ E K, for 
arbitrarily large /3 > a, there is an isomorphism f from N~ over No 
into o M~.I, f(a)= b~. 

Before we continue to list the conditions, we define, for 6 _-< a < to~ (when M~ 

(/3 =< a, n < to) have already been defined): 

W~ = {(J~,p, h): /(r  an M~-candidate, p _-< k(/V), h [No = the identity, h an 
embedding of Np into Me ; for some n, for each l < p for 

some /3~, 8 =</3, < a, h(a,)  = b~,, h(N~+~) = M~,+I and 
{/3t + 1 : l < p} = w~"- 8 - {y: for some limit/3 ~ w2, 7 = 

Max(w,] f'l/3)}}; 

n(h) will be the n mentioned above. 

REMARK. Note that necessarily fl~ < fl~+l. 

We say (1V, b) is an M-witness if /V is an M-candidate, /7 ~ / q ;  and 

(C) (1) F, is a countable family, increasing with a, 

(2) each member of F, has the form (D,6),  6 a limit ordinal =< a or is 
zero, and D a set of Ms-witnesses, (V/V')[(N,/~)ED, /~< /V ' ,  
N~ C_ M ~ (N', b) E D]  and 6 E No, /V an Ms-witness implies 
(N,b)ED, 

(3) Ms satisfies each (D ,8 )~ I ' ~ ,  which means: for every (N,b) an 
M~-witness and p, h and r < to s.t. (N, p, h) E W~, there is N'  _-> N 
and h'  extending h s.t. (N ,p,h')E W8 and (N',b)~.D, n(h')>r, 

(4) if 6 is limit and M~ satisfies (Ds, 6) (see 3) then (Ds, 6 ) E  F~, where 
D~ ={(N,b):(N,b) is an Ms-witness and: b E N o  or there is no 

embedding f of N into Ms over No with f(/~)E h}, 
(5) Fo= {(Do,0)}, Do={(/q,b): /V a candidate, b E Nk~m-~ or for every 

/V'->_/V, b ~ N ~ ) _ ,  }. 

Stage IlL Why carrying H suffices. Suppose we have carried the induction. We 

let M* = U~<~,Me and be,M2 has been defined. Let us check the conditions 

one-by-one: 
(a) We know that Me ~ Kl(~10) (by (A)(1)), Me increasing (by (A)(1)). By 

(A)(2), (A)(6), b~ E M~+I- M~ hence I1M* I1 = ~tl. By the definition of 
KI(A) (see 1.3) we finish. 

(c) Immediate by (A)(1) and (A)(6). 

(d) By (B)(4). 
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(e) By (B)(1), (B)(3) (for ce limit it is automatic as M, is increasing 

continuous). 

(f) By (B)(2), (B)(3). 
So we are left with proving (b). Suppose L m form a counterexample. So I is a 

set of m-sequences from ~o~, I c_ M* and there is no witness for (M*,I). Hence 

there is a function g whose domain is the set of M*-witnesses (N,b) (l(b) = m), 
/Q=</V' where 1V'=g(N,b), N[,C_M*, [bfLN~(V1V">=N')b~_N'~] and if 

b~:N[~ there is no embedding f of /V' into M* over N~ such that f(b)EL 
Clearly every /V" enjoys this property if N~; _C M*. 

Let C = {a < ~ol :(a) a a limit ordinal, to(1 + a )  = a, (b) for every Ms-witness 

(/~,/~), N~C_M, where /V'=g(/V,/~), (c) for every / 3 < a < 3 '  and n < k ,  

?l . . . . .  ~, E M~ there is 3", /3 < 3" < a, and isomorphism h of M~ onto M~, s.t. 
n n ! ! t ~?~ E I <::> h(et)@ I and if w , =  {el,.-. ,eh} then w v,= {el . . . .  ,eh}, e, < /3 V e l <  

/3 f f  e~ = e~, h maps MT, onto MTi, b,:, to b, i, and et </3 f f  h [MT,=the 
identity}. Clearly C is a closed unbounded subset of to1 (remembering there are 

essentially I, lo M,,-candidates, as K has only countably many members up to 

isomorphism and each No E K is f.g.). 

So for some 6 E C, I '  = {b : b E L g E Ms}. Now using g [{(N, b): (N, b) and 

M~-witness} we see that M8 satisfies (D~, 6) (see definition in (C)(3)where D~ is 

defined as in (C)(4)). Hence by (C)(4) (D~, 6) E F~. As I is uncountable, there is 

eEL  e~M~. 
So for some a > 6, ~ E M~, w.l.o.g, ct is minimal and for some n, ~ E M~. 

W.l.o.g. 6 + l , 6 E w ~ " ,  and let w ~ - 6 - { / 3 : / 3  a limit ordinal}= 
n n n {/31 + 1,/32 + 1 . . . . .  /3k + 1}. Note that if 3' E w,  is a limit ordinal then M~ - M~ 

where /3 = Max(w~" r) 3')- Of course fll </3z < "'" hence /31 = 6. So 

/~ ~'= (M~, M~,+I . . . . .  M~" ÷1, a~, , . . . ,  a~ ) 

is a candidate over M~, and ? E/V. So wit]a h the identity over M~,+l, p = k + 1, 

(/V,p, h) ~ W~. So ? E M~+I,  and/3~ < a so/3~ + 1 = a hence by (C)(3) apply to 

(Do,0) (which belongs to Fo _C F~); we could have chosen n large enough so that 

for no N' _-> N, b ~ N~. So we can apply (C)(3): there is/V' > /V and h'  extending 

h s o t h a t  - '  " ' - (N ,p, h') ~ W~ and ( N ,  c) E D~. So/V < h'(/V') (as h is the identity), 

( N ' , b ) E  D~, and between the definition of D~, choice of 6 and C we get a 

contradiction. 

Stage IV. Suppose everything is defined for/3 =< a and we define, for a + 1, 

F~+l = Fo • there is no problem to define wT,+l (n < to) as required in (A)(3). Let, 

for n ~ S~, 
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w: - {6 : 6 limit or 0} = {e (c~, n, 1) + 1 . . . . .  e (a, n, ks, n) + 1} (increasing), 

We define by induction on n, k, E S~, M]?. E K, k, < k,+~, e~" an embedding of 
k k 

M]". into M]". +1 over M~" s.t. (M,",M~"., a~)E R. 

Later M,+l is the direct limit of (M~". • n < to) by the e~+~'s, M~"+~ the images of 

Mk~7.. By standard bookkeeping in each stage we get a specific requirement (each 

appearing infinitely (often) from some condition each contributing No specific 

requirements) and we have to prove that we can fulfill it. 

In choosing M ° we take care of (B)(4). 

(A)(1) will follow from (A)(4), 

(A)(2) by the requirements on the induction on n, 

(A)(3) is already fulfilled, 

(A)(4) by the requirements on the induction on n, 

(A)(5) irrelevant, 

(A)(6) by the requirements on the induction on n, 

(B) (1)-(4) easy, 

(C)(1) we have satisfied (F~+, = F,) ,  

(C)(2) similar to (C)(1). 

(C)(3) Suppose (D, 6)E F~, and (1V, p,h)@ WU',  (/Q,/~) an M~-witness. Note 

that for each n < to we can list the (Fl, p,h) for which h embeds ~r into M]+I so 

no vicious circle arises. So we are given n, (N,b), (IV, p,h) s.t. h embeds N into 
m]"+~, (N, b )an  Ms-witness/W.l.o.g. h (ap ,) = b~ (otherwise use (C)(3)for a !). 

k 

Let w , + , - { y : y  limit} = {a, . . . . .  ap} (increasing) so ap = a + 1. 

Choose k large enough, k E S~. We define by induction on l _-< k(/V), N~, h 

for l < p such that 

(N',, ' . . . ,  No, a~ ~,.. . ,  ao> => <N~ . . . . .  No, at ~ . . . . .  a0>, 

h~ extends h rNt, h~ maps N~ onto M],+~ where h(at)= h~,. By (A)(6) this is 

impossible. 
,k k t Now we define M',e' ,  where e' embeds M~". into M'  over M~",M~C_M, 

k t t R(M,~,M,b~) (see Definition 1.2(1)(c)). Then we can define Np and h~_D 

h;-~ U e', h~ an isomorphism from N~ onto M'. Similarly (by Definition 

1.2(1)(c)) we can define N ' , N  <= IV' (N] (l <-_ p) are already defined). 

rAnd for some 6, (/V,p,b)G W~'+l; so h [No = the identity and for some m 

I < p ~ h ( N , ) ~  {mT:  y E w~+,}, 

h(a,) E {b~ : y ~ w,"+l}. 
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Now apply (C)(3) for a, h~-l, (Np_, . . . . .  No,ap-2 . . . . .  ao) and 
- -  ~ t t  t t  N ,h ,n(h")>-r; n(h )ES~. 

Let k,+l = n(h"). Extending h" will give us M]". +~ and we have no problem. 
(C)(4) Trivial. 
(C)(5) Trivial. 

get 

Stage V. a limit. Easy. 

Stage VI. a = O. Easy. 
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